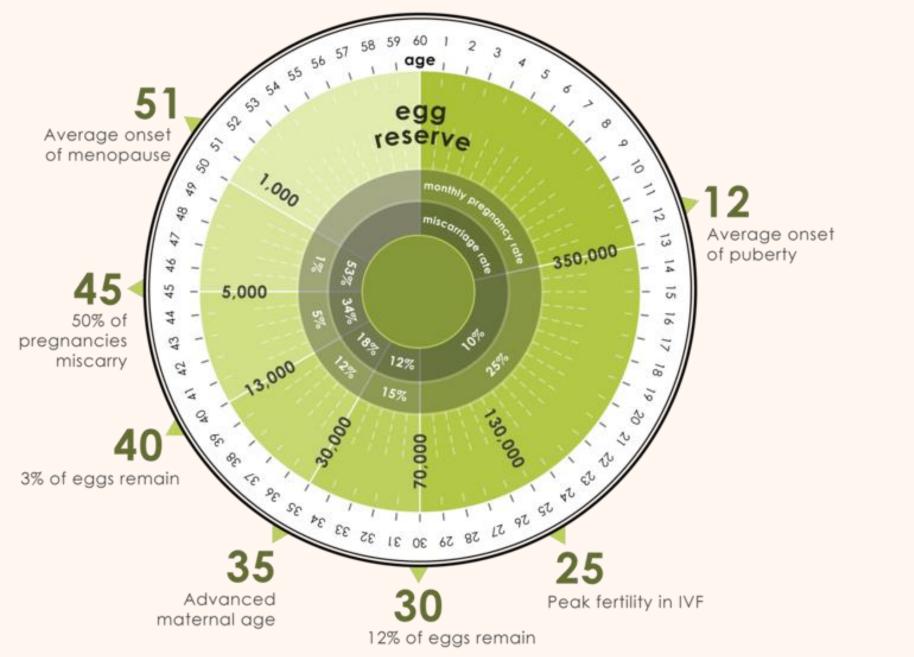
Primary Fertility Investigations and Male Infertility

Dr Bruno Radesic Date: 16th May 2024


fertilitySA

Introducing

Dr Bruno Radesic MD, FRANZCOG

Medical Director Genea Fertility SA Head of Gynaecology, Flinders Medical Centre Gynaecologist, Ashford Hospital Senior Lecturer, Adelaide University

Benea World Leading Fertility

AUA/ASRM Guideline

October 2020

Diagnosis and Treatment of Infertility in Men: AUA/ ASRM Guideline

Peter N. Schlegel, MD; Mark Sigman, MD; Barbara Collura; Christopher J. De Jonge, PhD, HCLD(ABB); Michael L. Eisenberg, MD; Dolores J. Lamb, PhD, HCLD (ABB); John P. Mulhall, MD; Craig Niederberger MD, FACS; Jay I. Sandlow, MD; Rebecca Z. Sokol, MD, MPH; Steven D. Spandorfer, MD; Cigdem Tanrikut, MD, FACS; Jonathan R. Treadwell, PhD; Jeffrey T. Oristaglio, PhD; Armand Zini, MD

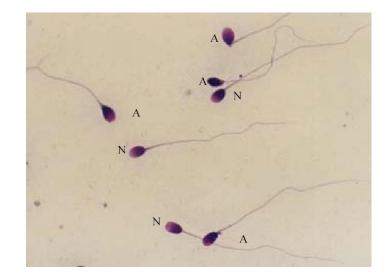
Investigate Male Infertility

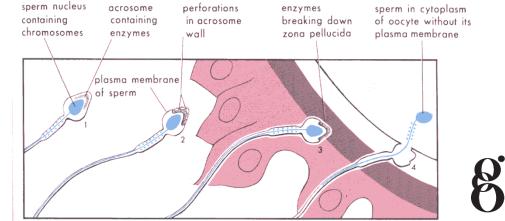
- Rewarding (Simple investigation with big returns)
 - Common
 - Highly effective treatments available
 - Room for improvement unlike egg, new sperm are made continuously into old age

Causes Frequency	(%)
Sperm defects or dysfunction	30
Ovulation failure (amenorrhoea or oligomenorrhoea)	25
Tubal infective damage	20
Unexplained infertility	25
Endometriosis (causing damage)	5
Coital failure or infrequency	5
Cervical mucus defects or dysfunction	3
Uterine abnormalities (eg fibroids or abnormalities of shape)	1

15% of couple have more than one subfertility factors

Investigate Male Infertility

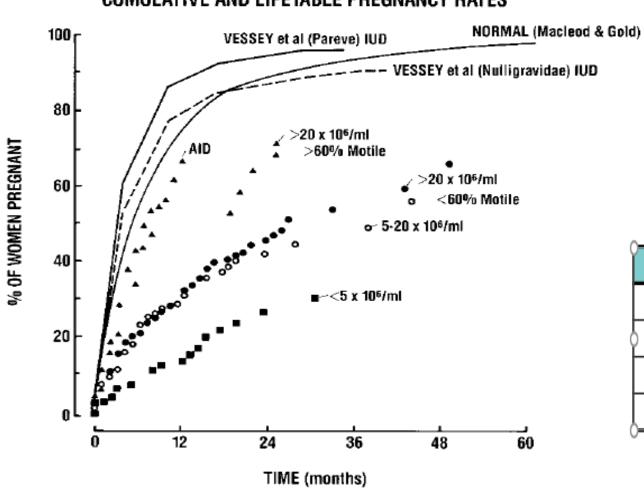

- Semen Analysis
 - -Simple, non-invasive, inexpensive
 - -Normal results excludes male factor in up to 90% (** caution with interpretation)



Fertilisation – concentration, motility and morphology

enea

Semen analysis 'abnormal'


Lower reference limits (5th centiles and their 95% confidence intervals) for semen characteristics (11).

Daramator (unite)	N	Centile			
Parameter (units)	7	5	50	95	
Total sperm number (10 ⁶ per ejaculate)	1859	39	255	802	
Sperm concentration (10 ⁶ per ml)	1859	15	73	213	
Total motility (PR + NP, %)	1781	40	61	78	
Normal forms (%)	1851	4	15	44	

Benea World Leading FERTILITY

fertilitySA

What does it mean doctor?

CUMULATIVE AND LIFETABLE PREGNANCY RATES

Baker and Burger — 1986

Centiles		
5	50	95
15	73	213
32	55	72
4	15	44
58	79	91
	5 15 32 4	5 50 15 73 32 55 4 15

Centiles

Number of factors	Monthly chance	Mean Years to Pregnancy	% Pregnancy in 2 years
0	20%	0.3 (4m)	93.6
0 1	5%	2	63.8
2	1%	7	20.7
3	0.2%	40	4.7

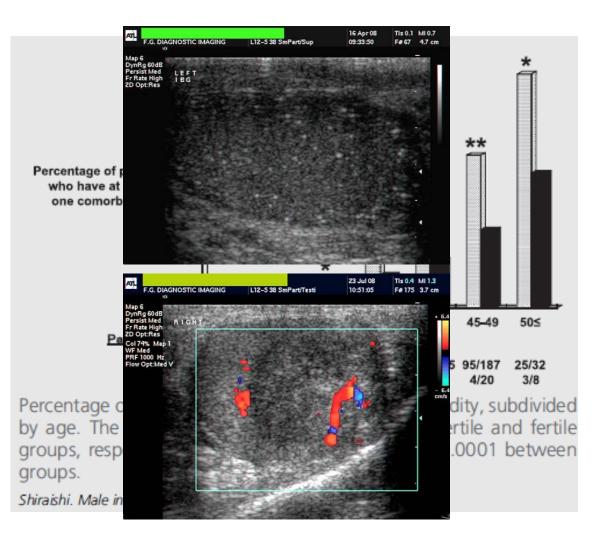
Male Investigations

- History
 - Hx of testicular disease:
 Cryptorchidism, torsion,
 trauma, infection, surgery.
 - Social Hx: smoking, heavy alcohol, recreational drugs, occupation, sleep
 - Med & surg Hx, Family Hx, Meds
 - Sexual Hx: Erection, penetration. ejaculation.

- Endocrine: rare present with sexual dysfunction (<2%)
 - -Hypothyroidism
 - -Hyperprolactinaemia
 - hypogonadotropic hypogaonadism

Male Investigations

- History
 - Hx of testicular disease:
 Cryptorchidism, torsion, trauma, infection, surgery.
 - Social Hx: smoking, heavy alcohol, recreational drugs, occupation, sleep
 - Med & surg Hx, Family Hx, Meds
 - Sexual Hx: Erection, penetration.
 ejaculation.
- Examination
 - Body habitat
 - virilisation
 - Testicular
- Investigations
 - Semen analysis, ab
 - FSH, LH, Testosterone, SHBG
 - FBC, EUC, LFTs, Fasting glucose insulin homocysteine, TSH
 - Gentics (karyotype, Y-del, CF ect)
 - Testicular u/s, bone density scan


- Obstructive Causes azoospermia
 - iatrogenic
 - Congenital non-junction or absence CF screening recommended (CF and CFTR gene), Congenital Bilateral Absence of the Vas Deferens (CBAVD)
 - bacterial infection (chlamydia trachomatis)
 - Ejaculatory duct
- **Primary Testicular Disease** *most common* cause of male infertility
 - -66% unknown
 - 20% testicular maldescent
 - -7% trauma and torsion
 - -5% Klinefelter's syndrome
 - -1% mumps orchitis
 - -1% chemo.ions

Male infertility - treatment

Options

• Treat correctable causes (lifestyles, toxins/drugs, hormone, inf) & health issues (cancer, T def)

Spermatogenesis

Pathology Results: Mr

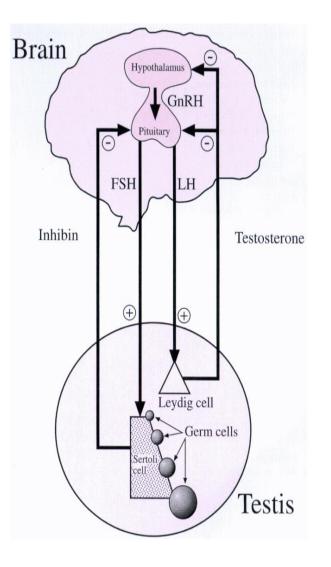
			-
Sem-F	-	31/01/2012	
Time	collected	0935	
Time	examined	1155	
Volu	ne	2.0	
Spert	n Concentratio	n 0	

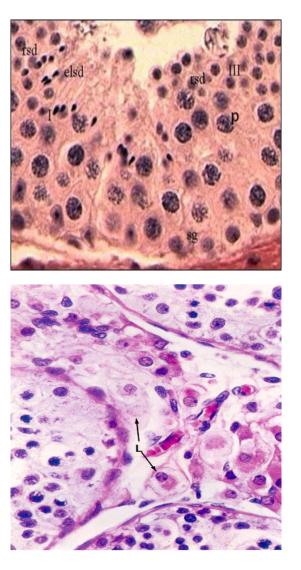
Motility

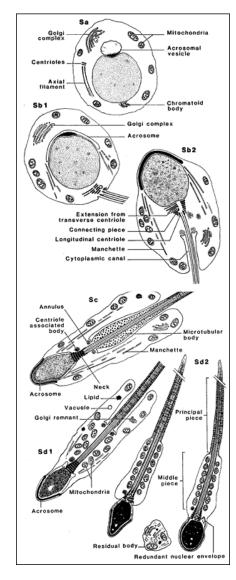
Rapidly progressive Slowly progressive Non progressive Non motile

Normal forms

(Reference: WHO Laboratory Manual


Test, .SHBG/FAI -	10/04/2012
TESTOSTERONE, SHE	G AND FAI
Date	25/02/12
Time F-Fast	1025 F
Lab ID	47568560
FSH	
LH	
Testosterone SHBG FAI	* 46.3


Supervising Pathologist: GC, NT



Spermatogenesis & Hormones

Spermatogenesis

Pathology Results:	Mr Anne				
Sem-F -	31/01/2012	10/04/2012	16/04/2012		
Time collected	0935	0745	0754		
Time examined	1155	1425	0830		
Volume	2.0	* 1.0	* 1.0	mL	(2-6mL)
Sperm Concentrati	on 0	22	28	10*6/mL	(>20x10*6/mL)
Motility					
Rapidly progressi	ve	10	10	8	
Slowly progressiv	'e	25	15	8	
Non progressive		5	5	ş	
Non motile		60	70	ş	
Normal forms		23	22	8	

(Reference: WHO Laboratory Manual, 4th Edition 1999)

Test,.SHBG/FAI - 10/04/2012 TESTOSTERONE,SHBG AND FAI

Date Time F-Fast Lab ID	25/02/12 1025 F 47568560	10/04/12 0820 F 205130542	16/04/2012 212984244	Units	Range
FSH LH Testosterone SHBG FAI	* 46.3	1.6 2.8 14.8 24 61.7	1.6 4.6 * 11.2 25 45.8	U/L U/L nmol/L %	(1.5 - 13.0) (2.0 - 10.0) (11.5-32.0) (15-50) (15-100)

Supervising Pathologist: GC, NT

Spermatogenesis

DHM - Reference No: 276344931 Status: F

Patient:	
DOB:	19/07/1971
Address:	1/18-26 Romsey Street Waitara 2077
Ordered by:	Dr Derek LOK on 09/05/2013
Copy to:	Clinic Nurse Co-Ordinator
Collected:	28/09/2013 - 9:00 AM
Reported:	28/09/2013

TESTOSTERONE, SHI	BG AND FAI	
Date	29/08/10	13/04/13
Time F-Fast	0915 F	0915 F
Lab ID	205046992	276063428
Testosterone SHBG	* 2.2	* 6.7
FAI FSH		(2.5)
LH Oestradiol		146

SIVFANDR - Re	ference No: SYD03639 Status:		
Patient:	Street States	Linked by:	Dr Derek Lok
DOB:	19/07/1971	Message:	sev triple know
Address:	1/18-26 Romsey Street Waitara 2077		
Ordered by:	Dr Derek LOK on 00/00/0000		
Collected:	19/04/2013 - 12:00 AM	Notified by:	on 00/00/0000
Reported:	00/00/0000	Message:	

GENEA - ANDROLOGY RESULTS

Test	Result	Units	Ref Range
SEMEN ANALYSIS		.+	
Test Date	19/04/2013		
Ejaculate Volume	1.5	nl	>= 1.5
Sperm Concentration	1.7	million/ml	>= 15
Total Sperm Count	2.6	million/ejaculate	>= 39
Motility:			
Rapid	25	ł	
Progressive	33		>=32
Motile	43	ę.	>=40
Motility Index	101		>120
Progression Rating	2		>=3
Morphology:			
Normal Forms	0	-	>=2 [GENEA] >=4 [WHO]
Head	100	8	
Neck/mid piece	47	40	
Tail	30	ł	
Cytoplasmic droplets	0	ł	
TEI	1.77		<2.0

fertilitySA

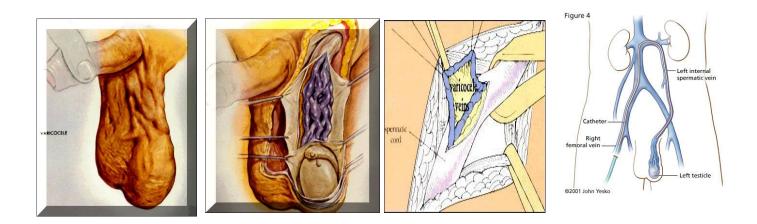
DHM -	Reference	No:	276344931	Status: F

Address: Ordered by: Copy to:	19/07/1971 1/18-26 Romsey Dr Derek LOK on Clinic Nurse Co 28/09/2013 - 9:	09/05/2013 -Ordinator		Linked by: Message: Notified by:	tara 2077 3		-	Jane A No Act		
Reported:	30/09/2013			Message:		Message	-	on ot	,,,	
Semen Analysis										
Time collected Time examined		0900 0940			2 <mark>4/08/13</mark> 0920	# 28/09/1 0900	3			
Volume		2.5	mL	(2-6mL	277207228	276344931	Units	Rang	re	
Sperm Concentra	ation	55	x10*6/	mL (>20x1	16.7	16.9	nmol/L		-28.0)	
Motility					20	20	nmol/L	(15-		
Rapidly progres	ssive	30	8		83.5		8	101-00-01	100)	
Slowly progress	sive	30	8		5.6	5.8	IU/L	(1.0 - 12)	0'0100
Non progressive	5	20	8		5.8	6.6	IU/L	(0.6 - 12)	genea
Non motile		19	8		<50	70	pmol/1	L (<160)	WORLD LEADING FERTILITY
					Aromata	ase Inhibi	tor			fertilitySA
Normal forms Comment on Lab	ID 276344931	* 11	ŝ		<u>+ Lifestyl</u>	<u>e changes</u>				JertintySA

Male infertility - treatment

Options

- Treat correctable causes (lifestyles, toxin/drugs, hormone, inf) & health issues (cancer, T def)
- Expectant & support
- Conventional medical and surgical treatments



Preventative

• Cryptorchidism

Severe oligo / azoospermia	Untreated	Pre-pubertal orchidopexy
Unilateral	50-70%	37%
Bilateral	100%	70%

• Varicocoele in adolescents

Treatment

Varicocoele

Preventative

• Cryptorchidism

Severe oligo / azoospermia	Untreated	Pre-pubertal orchidopexy
Unilateral	50-70%	37%
Bilateral	100%	70%

• Varicocoele in adolescents

Treatment

• Varicocoele

fertilitySA

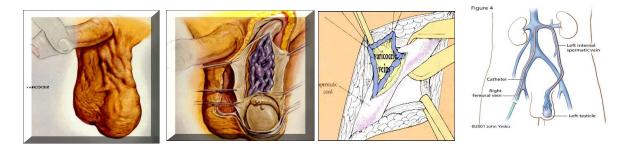


Figure 3. Forest plot of comparison: I Varicocele occlusion versus no treatment, outcome: I.I Pregnancy rate.

	Varicocele occl	usion	No treat	ment		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Nilsson 1979	4	51	8	45	13.9%	0.39 [0.11, 1.41]	
Breznik 1993	13	38	22	41	24.7%	0.45 [0.18, 1.11]	
Madgar 1995	15	25	2	20	1.6%	13.50 [2.55, 71.40]	
Yamamoto 1996	3	45	4	47	6.5%	0.77 [0.16, 3.64]	
Nieschlag 1995/1998	18	62	16	63	19.9%	1.20 [0.55, 2.65]	_ _
Grasso 2000	1	34	2	34	3.4%	0.48 [0.04, 5.61]	
Unal 2001	2	21	1	21	1.6%	2.11 [0.18, 25.17]	
Krause 2002	5	33	6	34	8.9%	0.83 [0.23, 3.05]	
Dohle 2010	19	65	6	65	7.5%	4.06 [1.50, 10.99]	
Abdel-Meguid 2011	24	75	10	75	12.0%	3.06 [1.34, 6.97]	
Total (95% CI)		449		445	100.0%	1.47 [1.05, 2.05]	◆
Total events	104		77				
Heterogeneity: Chi ² = 27	.01, df = 9 (P = 0.0	001); I ² =	67%				
Test for overall effect: Z	= 2.23 (P = 0.03)			(Cochra	ne 2012	0.01 0.1 1 10 100 Favours Control Favours Treatment

26. Clinicians should not recommend varicocelectomy for men with nonpalpable varicoceles detected solely by imaging. (Strong Recommendation; Evi-

fertilitySA

Preventative

• Cryptorchidism

Severe oligo / azoospermia	Untreated	Pre-pubertal orchidopexy
Unilateral	50-70%	37%
Bilateral	100%	70%

• Varicocoele in adolescents

Treatment

- Varicocoele
- Ejaculatory duct cyst
- Vasectomy reversal

Authors	Year	# Pts	Patency rate	Preg rate
Cos et al	1983	87	75% (66/87)	46% (32/69)
Requeda	1983	47	80% (38/47)	46% (18/39)
Owen & Kapila	1984	475	93% (439/475)	82% (390/475)
Lee	1986	324	90% (292/324)	51% (165/324)
Silber*	1989	282	91% (258/282)	81% (228/282)
<u>Belker</u> et al	1991	1247	86% (865/1012)	52% (421/808)
Fox	1994	103	84% (86/103)	48% (31/64)
Total		2565	88% (2044/2330)	62% (1285/2061)

Preventative

• Cryptorchidism

Severe oligo / azoospermia	Untreated	Pre-pubertal orchidopexy
Unilateral	50-70%	37%
Bilateral	100%	70%

• Varicocoele in adolescents

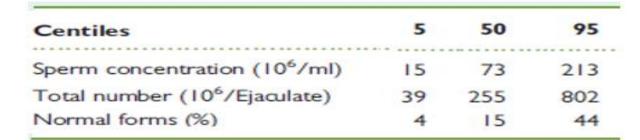
Treatment

- Varicocoele
- Ejaculatory duct cyst
- Vasectomy reversal

ART – sperm retrieval

- Azoospermia
- Anejaculation
- Epididymal necrospermia / Sperm DNA fragme

fertilitySA


Medical therapy for semen defects not useful

Agents	RCT	Patients	OR	CI
HMG/rFSH	3	233	1.45	0.78-2.7
androgen	9/13	1025	1.02	0.72-1.44
anti-E2	6/11	459	1.33	0.78-2.28
kallikrein	4/16	459	0.92	0.4-2.28
Bromocriptine	3		No effect	

- 42. Clinicians should inform the man with idiopathic infertility that the use of SERMs has limited benefits relative to results of ART.
- 43. Clinicians should counsel patients that the benefits of supplements (eg, antioxidants, vitamins)

are of questionable clinical utility in treating male infertility. Existing data are inadequate to provide recommendation for specific agents

Spermatogenesis – genetic variants/cryptic genetic factors

Box 2 Genetic basis of human male infertility defects: spermatogenesis and sperm function

Gene defects identified in infertile male individuals with spermatogenesis or sperm function defects are listed below. The details of each gene and the associated phenotype are found in Supplementary Table 2. SNPs are shown in red. Some studies represent only a few individuals or case reports.

Abnormal spermatogenesis

ATM; ATMAC; DAZL; ERCC2; GTF2A1L; JUN; NLRP14; NRB0B1; POLG; PRM1; PRM2; SDHA; SOX8; XRCC1; YBX2

Azoospermia

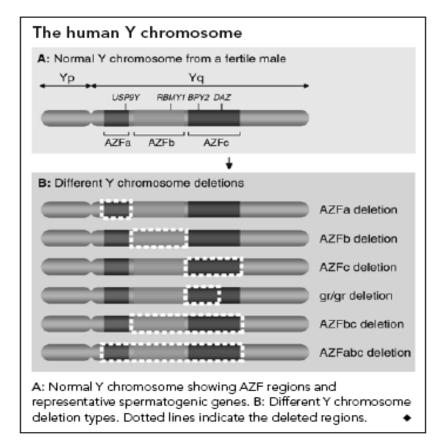
APOB; ACSBG2; ART3; ATM; BOULE; BPY2; BRCA2; CDY1; CFTR; CREM; DAZ; DDX25; DDX3Y; DRFFY; ERCC1; ERCC2; FASLG; FHL5; FKBP6; HNRNPC; HSFY1; KLHL10; LAP3; MBOAT1; ME11; MLH3; MTR; NLRP14; PRDM16; RBMX; RBMY1A1; RBMY1F; SPATA16; SYCP1; SYCP3; TAF7L; TGIF2LX; TSPY; TSSK4; UBE2B; USP26; UTP14C; USP9Y; UTY; XPC; XPD; XRCC1; YBX2; ZNF230

Oligospermia

MT-ATP6; EGF; FASL; H19 and MEST; KLHL10; PIGA; PRM1; PRM2; SHBG; SDHA; TSSK4; UBE2B; VASA

Asthenozoospermia

AKAP3; AKAP4C; CATSPER2; DNMT3B; DHAH5; DNAH11; DNAL1; PDYN; GNA12; Mitochondrial DNA; MTHFR; MT-ND4; PIGA; POLG, PPM1G; PRKAR1A; SHBG; SPAG16; TEKT1; TEKT2; TPN1; TPN2; TXNDC3; T mt DNA haplotypes


	Teratozoospermia
AUF	RKC; PRM1; PVRL2; SPATA16; SP1
	Oligoasthenozoospermia
	JUND; mt-ND4; NALP14
O	ligoasthenoteratozoospermia
	MTRR; IL1B; SABP
	Acrosome or fertilization
	POIA3
DNA damage	Infertility
GSTM1	AR; GSTM1 KIT; KITLG; IL1A; OAZ3; PRM1; TSPY; TSSK4; USP26; YBX2
	Varicocele effect
MT-ATP6; MT	T-ATP; CACNA1C; MT-CO1; MT-CO2; MT-ND3
	Chromosome defect
Numerical sex chromosome (Klinefe Structural chromosome (translocatio Y chromosome microdeletions, XX m	ons, inversions or deletions)
Syst	emic disorders affecting fertility
Kartagener's syndrome	Noonan (PTPN11)

Sickle cell anemia (HBB)

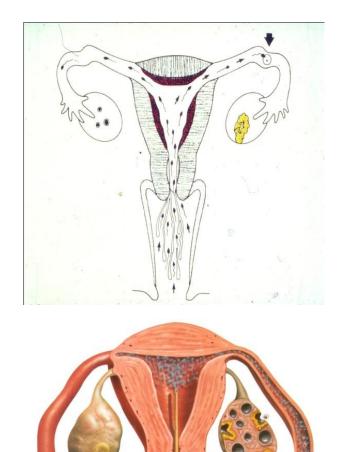
B-thalassemia

Fanconi anemia (FANCA)

Myotonic dystrophy (DMPK)

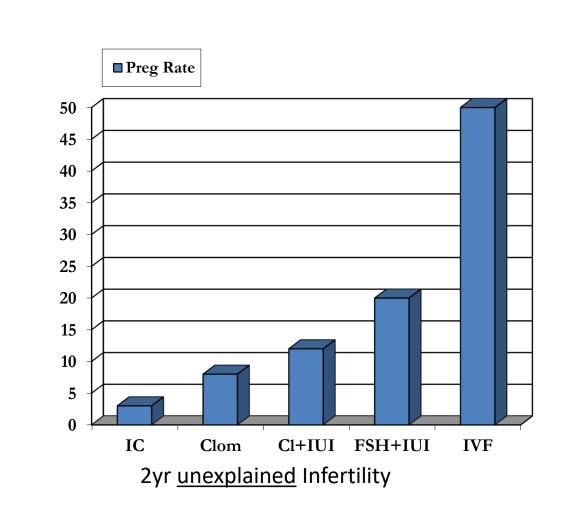
Male infertility – Assisted Reproductive Treatment

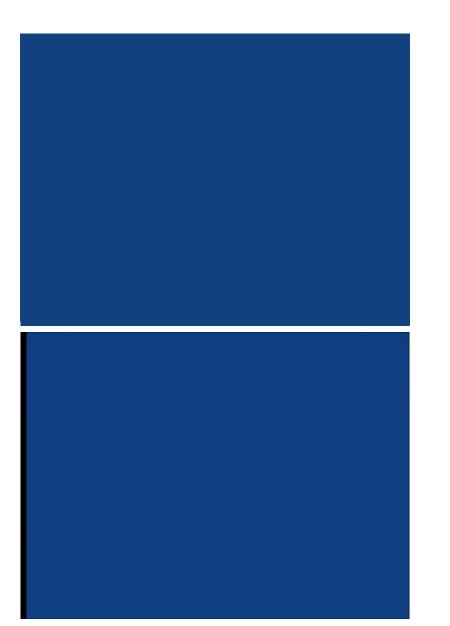
Options


- Treat correctable causes (toxin, hormone, inf)
- Expectant & support
- Conventional medical and surgical treatments
- Intrauterine insemination (IUI)
- IVF/ ICSI
- Donor Sperm & artificial insemination
- Adoption

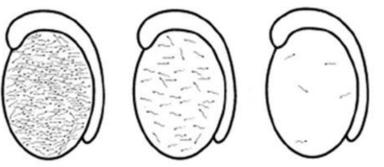


IUI of washed sperm

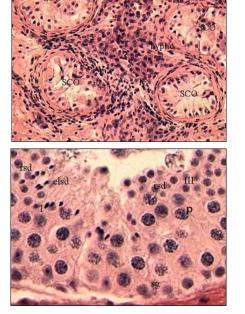

- May be useful as starting point for idiopathic infertility but less effective (half) in male infertility(3-10%)
- Meta-analysis on IUI alone for male factor showed no benefit
 - -Need => 5mil motile sperm

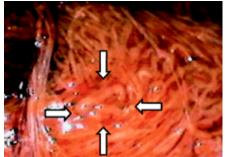


IVF and ICSI



Azoospermia & sperm extraction




- 0.5% of men, 2% of infertile couples, 8% of the cases of male infertility (BMJ 291:1693; BJU 56:422)
- 40% obstructive & 60% non-obst (HR 200015:2356); <2% correctable (hypogonadotrophic, ejaculatory duct cyst)
- Sperm retrieval far more likely with open biopsy then needle aspiration (e.g. 43% vs 11% - Friedler et al 97; 43% vs 7% Tournaye 99)
- May require >10 and up to 14 biopsies (average 4.5, those with single bx <30% sperm recovery) (Osted et al Urology 1998:52:692-7)
- Microdissection TESE less tissue removed (4.7mg vs 56mg) lower bleeding complication (13-30 vs 58%) and higher sperm recovery rates (47-63% vs 30-45%) (Amer et al 83, Schlegel & Li 98)

Degrees of Azoospermia

Normal Spermatogenesis Non-Obstructive Azoospermia Non-Obstructive Azoospermia (All tubules have sperm) (One in 20 tubules have sperm) (One in 100 tubules have sperm)

Case: Multiple IVF failures

- F42, M47
- Primary Infertility 4 yrs
- Male factor; Female age
- ICSI x 10 cycles (Aug 04
 - May 07) no preg/mc

Dear John,

MRSKANCHAMANAPATANACHEM DOB 5/06/1965 DOB 20/09/1960 MR SEKAEDSEAN

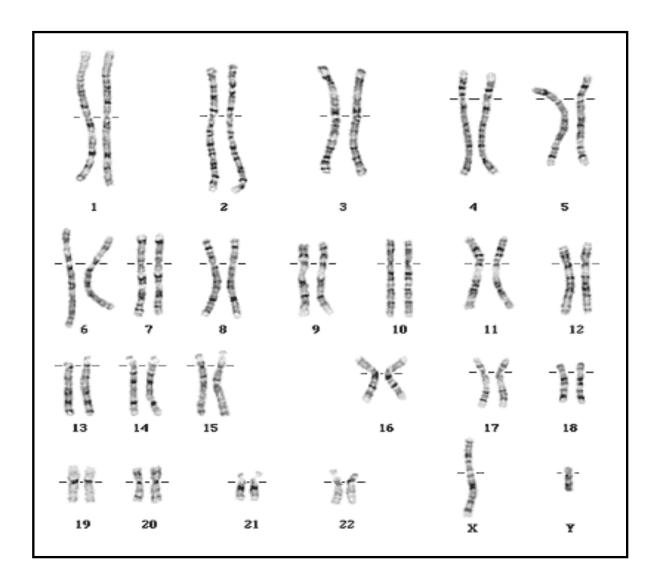
Thank you very much indeed for asking me to review this pleasant couple with 4 years history of primary infertility and 10 cycles of failed IVF treatments at IVF Australia.

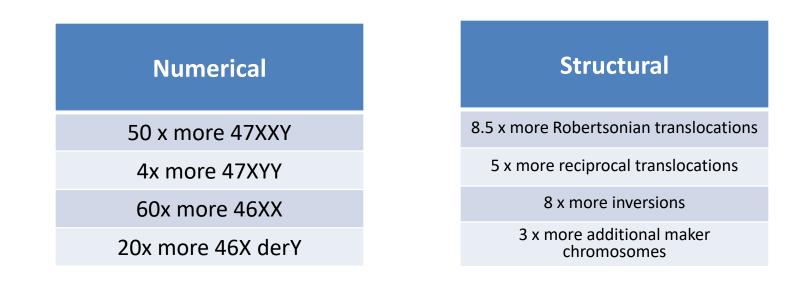
seen actively tyring to conceive in the past 4 years without success. They ha investigations performed by fertility specialist with male factor infertility diagnosed and they procee of VF treatment with sperm microinjection. In Kanachana's last 4 cycles, antagonist stimulating regime wa with satisfactory response as well as attempt for blastocyst culture. Though details of the embryology results were not available, from their description the qualities of the embryos were below average with no embryos frozen from ony of the cycles. In between those failed treatments, Kanchana had investigations looking into the immune subsets of endometrium and some of the thrombophilic factors, with no abnormal results found. Kin's semi analysis showed normal sperm concentration, but poor sperm motility and morphology. More sinister was the high level of DNA fragmentation at 39.3 %, a level which seldom compatible with successful treatment outcom

improved understanding of some of the subtle causes for recurrent nete DNA damages. Further, as in IVF treatment embryo development tory environments (which are different between different ess exposed to the embryo hence the fertility treatment success rate. I also s of orarian stimulation may lead to different treatment outcomes, a recent tagonist stimulating regime in general produces inferior results approaches in dealing with the high sperm DNA fragmentation and

fertilitvSA

Example a set without have been actively tyring to conceive in the past 4 years without success. They had investigations performed by fertility specialist with male factor infertility diagnosed and they proceeded 10 cycles of IVF treatment with sperm microinjection. In **Kanadama**'s last 4 cycles, antagonist stimulating regime was used with satisfactory response as well as attempt for blastocyst culture. Though details of the embryology results were not available, from their description the qualities of the embryos were below average with no embryos frozen from soing; the sperm DNA damages can be rectified with the current any of the cycles. In between those failed treatments, **Kan** had investigations looking into the immune subsets of endometrium and some of the thrombophilic factors, with no abnormal results found. analysis showed normal sperm concentration, but poor sperm motility and morphology. More sinister was the high level of DNA fragmentation at 39.3 %, a level which seldom compatible with successful treatment outcome.


Male treatment: IUI, IVF & ICSI


Reproduction – What is in the nutshell?

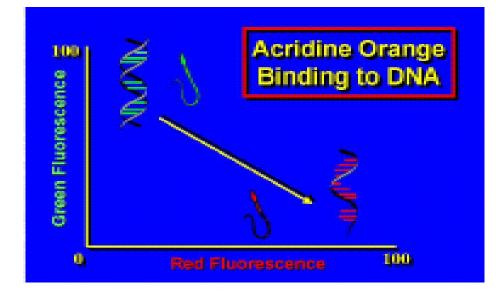
Primary testicular disease - genetics

Incidence chromosomal aberrations in infertile compared to the fertile population

fertilitySA

Hum Reprod 14 (Suppl 1) 24-27

Preimplantation Genetic Diagnosis


Day 5 (~128 cells) **biopsy** 2-9 cells from trophectoderm

- Mutation Testing (PCR)
- Translocations
- Aneuploidy Screening Reproductive Failure Elective
- HLA matching

Sperm DNA Integrity Chromatin Structure Assay (SCSA)

Not pregnant

Pregnant

60

50

40

30

20

10

Fragmentation Index

Percent DNA

- Sperm Chromatin Structural Assay (SCSA)
- Sperm Chromatin Dispersion Assay (SCD)
- Terminal Deoxyuridine Nick End Labelling (TUNEL)
- Comet Assay
- Acridine Orange Assay

Larson-Cook. Assisted reproduction and sperm DNA damage. Fertil Steril 2003.

Sperm DNA damages – ART outcomes

Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis

Jing Zhao, M.D., Qiong Zhang, M.D., Yonggang Wang, M.D., and Yanping Li, M.D.

	high DFI	group	low DFI	group		Risk Ratio				Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	Yea	é.	M-H,	Random, 9	5% CI	
Morris 2002	9	31	6	22	2.7%	1.06 [0.44, 2.56]	2002	2		-		
Virro 2004	16	57	50	107	7.5%	0.60 [0.38, 0.95]	2004	1				
Gandini 2004	5	10	7	24	2.7%	1.71 [0.71, 4.13]	2004	1		+-	-2	
Check 2005	8	29	26	77	4.3%	0.82 [0.42, 1.59]	2005	5		-+		
Greco 2005	1	18	8	18	0.6%	0.13 [0.02, 0.90]	2005	; —		_		
Zini 2005	6	11	25	49	5.0%	1.07 [0.58, 1.96]	2005	5		+		
Boe-Hansen 2006	7	25	46	161	4.2%	0.98 [0.50, 1.92]	2008	5				
Borini 2006	5	43	25	89	2.6%	0.41 [0.17, 1.01]	2008	5	-	-		
Ozmen 2007	1	8	10	34	0.6%	0.42 [0.06, 2.86]	2007	1		-+-		
Bungum 2007	55	201	242	797	14.5%	0.90 [0.70, 1.16]	2007			+		
Benchalb 2007	14	44	92	258	7.5%	0.89 [0.56, 1.42]	2007	1		+		
Lin 2008	22	43	93	180	11.5%	0.99 [0.72, 1.37]	2008	3		+		
Frydman 2008	20	52	40	65	9.2%	0.63 [0.42, 0.93]	2008	3		-		
Esbert 2011	11	26	76	135	7.3%	0.75 [0.47, 1.21]	2011	È.				
Semon 2013	37	192	49	147	10.0%	0.58 [0.40, 0.84]	2013	3		-		
Dar 2013	19	39	53	114	9.7%	1.05 [0.72, 1.53]	2013	3		+		
Total (95% CI)		829		2277	100.0%	0.81 [0.70, 0.95]				٠		
Total events	236	289	6 848	37%		2638363625555555						
Heterogeneity: Tau ² =											1	
Test for overall effect		12000.201						0.01 Decrease	0.1 d with high	1 DFI Incre	10 ased with h	100 hih DF1

Forest plot showing the results of meta-analysis of studies comparing the effect of high sperm DNA damage and low sperm DNA damage on pregnancy after IVF/ICIS.

Fertility and Sterility® Vol. 102, No. 4, October 2014

fertilitySA

A systematic review and meta-analysis to determine the effect of sperm DNA damage on *in vitro* fertilization and intracytoplasmic sperm injection

OUTCOME Luke Simon^{1,*}, Armand Zini^{2,*}, Alina Dyachenko², Antonio Ciampi², Douglas T Carrell^{1,2}

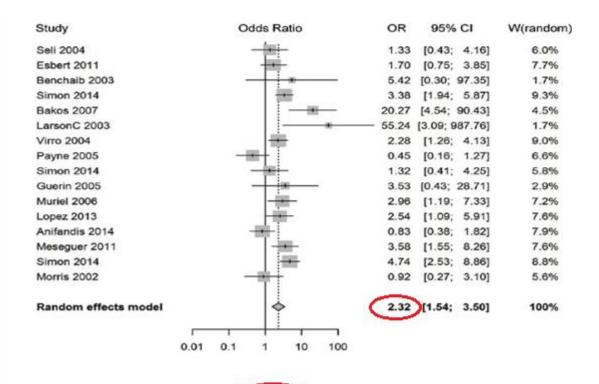


Figure 2: Forest plot of odds ratio to determine the negative effect of sperm DNA damage on clinical pregnancy outcome. (c) following Mixed" type of

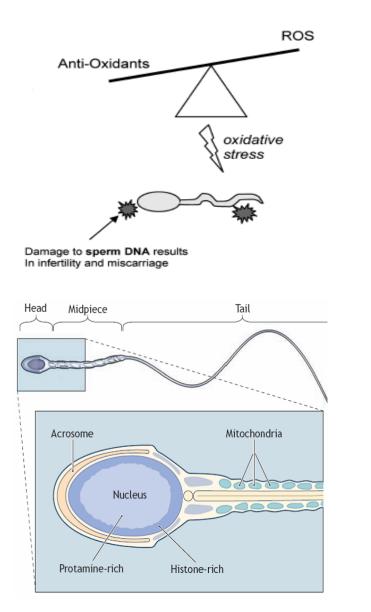
Asian Journal of Andrology (2017) 19, 80-90

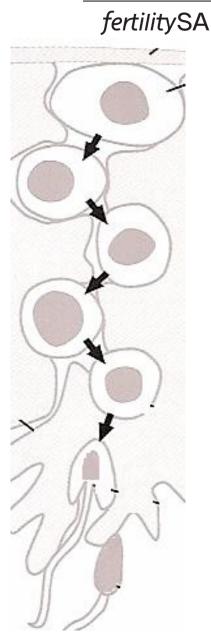
.

Sperm DNA damages – ART miscarriages

Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis JigZho, M.D., Yongang Wang, M.D., and Yanping Li, M.D.

	high DFI	group	low DFI g	group		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	/ear	M-H, Random, 95% CI
Morris 2002	3	9	0	6	1.7%	4.90 [0.30, 80.69] 2	2002	
Gandini 2004	0	5	0	7		Not estimable 2	2004	
Zini 2005	2	6	3	25	4.7%	2.78 [0.59, 13.11] 2	2005	
Check 2005	5	8	11	26	11.9%	1.48 [0.73, 2.97] 2	2005	
Greco 2005	1	1	0	8	1.7%	13.50 [0.81, 224.24] 2	2005	
Borini 2006	3	5	2	25	4.9%	7.50 [1.66, 33.94] 2	2006	
Ozmen 2007	1	1	3	10	6.9%	2.36 [0.73, 7.66] 2	2007	
Benchaib 2007	5	14	7	92	8.4%	4.69 [1.73, 12.77] 2	2007	
Bungum 2007	14	55	55	242	14.6%	1.12 [0.67, 1.86] 2	2007	-
Lin 2008	6	22	9	93	9.2%	2.82 [1.12, 7.09] 2	2008	
Frydman 2008	7	20	4	40	7.5%	3.50 [1.16, 10.57] 2	2008	
Esbert 2011	5	11	8	76	9.2%	4.32 [1.72, 10.85] 2	2011	
Semon 2013	5	37	8	49	8.1%	0.83 [0.29, 2.32] 2	2013	
Dar 2013	7	19	13	53	11.2%	1.50 [0.71, 3.19] 2	2013	+
Total (95% CI)		213		752		2.28 [1.55, 3.35]		•
Total events	64	40%	6 123	16%				
Heterogeneity: Tau ² =	0.19; Chi ² =	21.48, 0	f= 12 (P =	0.04); 1	² = 44%		I	
Test for overall effect:		2003030						0.01 0.1 1 10 10 Decreased with high DFI Increased with high DF


Forest plot showing the results of meta-analysis of studies comparing the effect of high sperm DNA damage and low sperm DNA damage on miscarriage after IVF/ICSI.


Fertility and Sterility® Vol. 102, No. 4, October 2014

Sperm DNA damages

- Oxidative damages
 - Sperm are unable to repair DNA damage induced by oxidative stress, because they lack the required cytoplasmic enzyme systems (lost through sperm maturation) to perform the repair.
 - High reactive oxygen species (free radicals) can be found in fried foods, alcohol, tobacco smoke, pesticides and air pollutants, obesity/inflammation.
 - Sperm damage has been identified in 30-80% of infertile men^{2,3,4}
- Susceptibility
 - Sperm defects loss of tight packaging of the DNA
- Outcomes egg qualities
 - The oocyte/egg is capable of repairing low levels of sperm DNA damage. However, if not repaired sufficiently, damaged genes may be passed on to the offspring or increase risk of miscarriage

enea

WORLD LEADING FERTILITY

Sperm DNA damages

- Susceptibility
 - Sperm defects loss of tight packaging of the DNA
- Oxidative damages
 - Excessive ROS
 - Deficient anti-oxidants
- Poor outcomes
 - Inadequate oocyte repairing capability

- Treatment options
 - Improving spermatogenesis
 - Lower ROS exposures
 - Antioxidants
 - Shorten sperm transit time
 - Obtain sperm before damage
 - testicular sperm
 - Select undamaged sperm
 - Sperm washing
 - Sperm sorter
 - PICSI
 - High magnification ICSI

Antioxidants

Australian and New Zealand Journal of Obstetrics and Gynaecology 2007; 47: 216-221

Original Article

A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment

Menevit active capsule Lycopene 6 mg Vitamin E 400 IU Vitamin C 100 mg Zinc 25 mg Selenium 26 µgm Folate 0.5 mg Garlic 1000 mg Palm oil (vehicle)

H. W. G. BAKER D. EDGAR Letters to the Editor

indicated in the discussion that the reports are inconsistent. It is peculiar that no data are reported on change in semen analysis or TUNEL results for the trial patients. Was there no change?

ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment Human Reproduction Vol.20, No.9 pp. 2590–2594, 2005

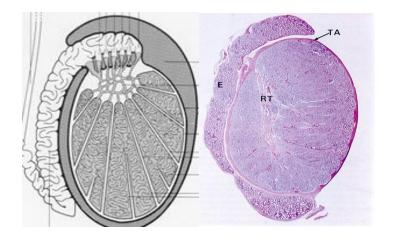
Ermanno Greco¹, Stefania Romano¹, Marcello Iacobelli¹, Susanna Ferrero¹, Elena Baroni¹, Maria Giulia Minasi¹, Filippo Ubaldi¹, Laura Rienzi¹ and Jan Tesarik^{2,3}

¹Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149 Rome, Italy and ²MAR&Gen, Molecular Assisted Reproduction and Genetics, Gracia 36, 18002 Granada, Spain

³To whom correspondence should be addressed. E-mail: cmendoza@ugr.es

BACKGROUND: Most studies examining the use of ICSI for cases of elevated sperm DNA fragmentation report poor pregnancy and implantation rates. ICSI with testicular sperm samples has recently been suggested for these cases. Here we test a less invasive approach based on oral antioxidant treatment prior to ICSI with ejaculated spermatozoa. METHODS: Thirty-eight men with an elevated (\geq 15%) percentage of DNA-fragmented spermatozoa in the ejaculate were treated with <u>antioxidants (1g vitamin C and 1g vitamin E daily) for 2 months after one failed IfC' intent 'wfcfff' aftit elevation' (\geq 13'70) percentage of 'DD (\times F-11 ted spe RESUL antioxidants (1g vitamin C and 1g vitamin E daily) fo</u>

ICSI abs.p. posses. this. twost moant. lock. to...doorogo so its. the more contract pregnancy (48.2% versus 6.9%) and implantation (19.6% versus 2.2%) rates was observed after the antioxidant treatment as compared with the pretreatment ICSI outcomes. CONCLUSIONS: Oral antioxidant treatment appears to improve ICSI outcomes in those patiens with sperm DNA damage, in whom this treatment reduces the percentage of damaged spermatozoa.


Table II. Comparison of basic sperm parameters and the incidence of DNA fragmentation in the antioxidant-responsive group before and after the treatment period^a

Time of analysis	Sperm concentration $(\times 10^{6}/\text{ml})$	Sperm motility (%)	Normal sperm forms (%)	TUNEL- positive spermatozoa (%)
Before treatment	17.9 ± 16.3	40.6 ± 24.8	10.5 ± 8.3	24.0 ± 7.9
After treatment	18.3 ± 17.9^{b}	$39.9\pm19.0^{\rm b}$	$9.6 \pm .4^{b}$	$8.2\pm4.3^{\rm c}$

Shorten sperm - transit time

Abnormally high ROS levels during sperm passage through epididymis in between antioxidant protection of Sertoli cytoplasm and seminal plasma (Evenson FS 2003)

While normal spermatozoa do produce small amounts of superoxide radicals, production is many times more in dead or defective spermatozoa and white blood cells (Ford 1990).

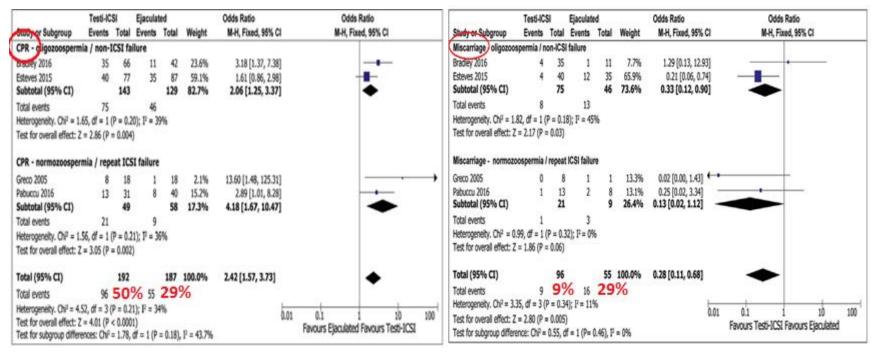
Serial daily ejac x 4 days reduced DFI by 25% Gosalbez et al FS 11 Reduction occurred in 90% of those affected Pons et al JARG 13

Sperm DNA damages

- Oxidative damages
 - Excessive ROS
 - Deficient anti-oxidants
- Susceptibility
 - Sperm defects loss of tight packaging of the DNA
- Poor outcomes
 - Inadequate oocyte repairing capability

- Treatment options
 - Improving spermatogensis
 - Lower ROS exposures
 - Antioxidants
 - Shorten sperm transit time
 - Obtain sperm before damage testicular sperm
 - Select undamaged sperm
 - Sperm washing
 - Sperm sorter/microfluidics
 - PICSI
 - High magnification ICSI

Testicular sperm


fertilitySA

	$-\Delta$			Δ					11 B///
	Testic			Fjacul		-		Mean Difference	Mean Difference
Study of Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
TUNEL	1 1								
Greco 2005	4.8	3.6	18	23.6	5.1	18	23.4%	-18.80 [-21.68, -15.92]	•
Mehta 2015	5	4.7	24	24	23	24	18.1%	-19.00 [-28.39, -9.61]	
Moskovtsev 2010	13.3	7.3	12	39.7	14.8	12	18.1%	-26.40 [-35.74, -17.06]	
Moskovtsev 2012	14.9	5	8	40.6	14.8	8	16.7%	-25.70 [-36.53, -14.87]	
Subtotal (95% CI)		Ĩ,	62			62	76.4%	-20.43 [-23.92, -16.95]	•
Heterogeneity. Tau ² = 2 Test for overall effect: 2				-).31);	I ² = 15	%		
SCD									
Esteves 2015	8.3	5.3	81	40.7	9.9	81	23.6%	-32.40 [-34.85, -29.95]	
Subtotal (95% CI)	V		81	\mathbf{V}		81	23.6%	-32.40 [-34.85, -29.95]	•
Heterogeneity. Not appl Test for overall effect: 2)7 (P <	0.0000	1)					
Total (95% CI) Heterogeneity. Tau ² = 67.94; Test for overall effect: Z = 6 Test for subgroup difference	.06 (P <	0.00001)				100.0%	-24.58 [-32.53, -16.64]	-100 -50 0 50 100 Favours Testicular Sperm Favours Ejaculated Sperm

Forest plot showing mean difference for sperm DNA fragmentation (SDF) rates between testicular and ejaculated sperm in men with high SDF, including subgroup analysis according to SDF assay (TUNEL and sperm chromatin dispersion [SCD]). CI = confidence interval; IV = inverse variance. *Esteves. Testicular sperm for ICSI in high-SDF patients. Fertil Steril 2017.*

Testicular sperm

Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis

fertilitySA

Esteves. Testicular sperm for ICSI in high-SDF patients. Fertil Steril 2017.

Testicular sperm

Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis

	Testi-IC:	SI	Ejaculat	ed		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95%	CI	M-H, Fb	ced, 95% CI	
Live Birth Rates oli	gozoosper	mia /	non ICSI	failure	e					
Bradley 2016	31	66	10	42	36.0%	2.83 [1.20, 6.69]				
Esteves 2015 Subtotal (95% CI)	36	77 143	23	87 129	64.0% 100.0%	2.44 [1.27, 4,70] 2.58 [1.54, 4.35]			+	
Total events	67		33							
Heterogeneity. Chi ² = 0.	.07, df = 1	(P = 0.	79); I ² = (0%						
Test for overall effect:	Z = 3.58 (P	= 0.00	03)							
Total (95% CI)		143		129	100.0%	2.58 [1.54, 4.35]			•	
Total events	67	47%	33	25%	6					
Heterogeneity. Chi ² = 0	.07, df = 1	(P = 0.	79); I ² = (0%			-	04		100
Test for overall effect: 7 Test for subgroup differ							0.01	0.1 Favours Ejaculated	Favours Testi-ICSI	100

fertilitySA

Esteves. Testicular sperm for ICSI in high-SDF patients. Fertil Steril 2017.

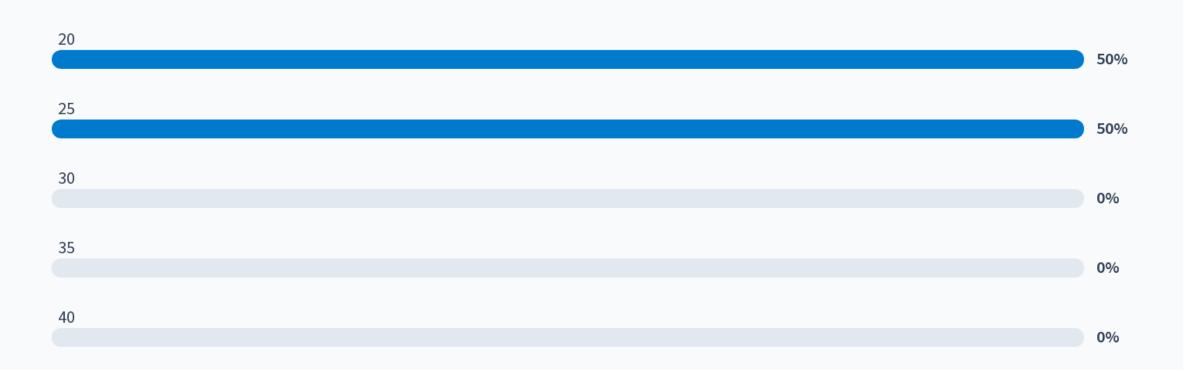
Case: K(42) & SK(47)

- Aug 2014 May 2017 (<u>age</u> <u>38-41</u>)
 - 10 IVF cycles
 - Embryo qualities poor, no embryo avail for freezing
 - No preg / Mc

- Aug 2017 (<u>age 42</u>)
 - Dx and Correction of high sperm DNA damages (DFI 39.3%)
 - -6 of 6 oocytes fertilised by ICSI
 - -5 blastocysts (grade 1-2):
 - 1 transferred fresh preg live birth June 08
 - 2 cryopreserved
 - single FET live birth 10
 - 1 remains

Making babies – Male perspectives

Rewarding (Simple investigation with big returns)


- Common
- Highly effective treatments available
- Room for improvement unlike egg, new sperm are made continuously into old age

What is most fertile age for women?

Which are first line fertility investigations for couple?

Hormones (FSH, LH, TSH, PRL, E2, Prog, AMH), day 2-6 pelvic ultrasound scan (check Uterus, ovaries, antral follicular count), tubal patency check (HSG, HyCosy), semen analysi...

0%

6%

82%

12%

0%

Hormones (FSH, LH, TSH, PRL, E2, Prog, AMH), day 2-6 pelvic ultrasound scan (check Uterus, ovaries, antral follicular count), tubal patency check (HSG, HyCosy), semen analysis

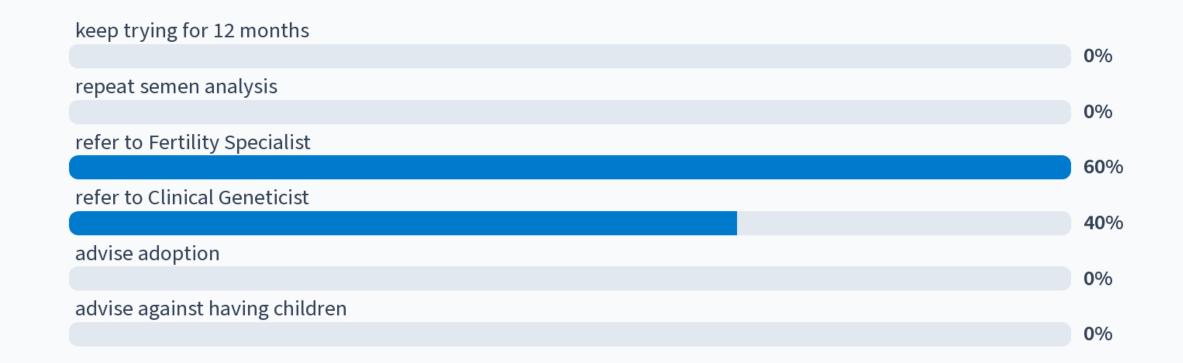
Hormones (FSH, LH, TSH, PRL, E2, Prog, AMH), day 2-6 pelvic ultrasound scan (check Uterus, ovaries, antral follicular count), semen analysis

Hormones (FSH, LH, TSH, PRL, E2, Prog, AMH), semen analysis

Hormones	(FSH.	LH.	TSH.	PRL.	E2.Prog.	AMH)

Couple seeks your advice on fertility after 12 months of not using contraception. How long would you advise couple to keep trying naturally at female age 40y + semen analysis (total sperm numbers 30mil, total motility 50%, morph 5%)?

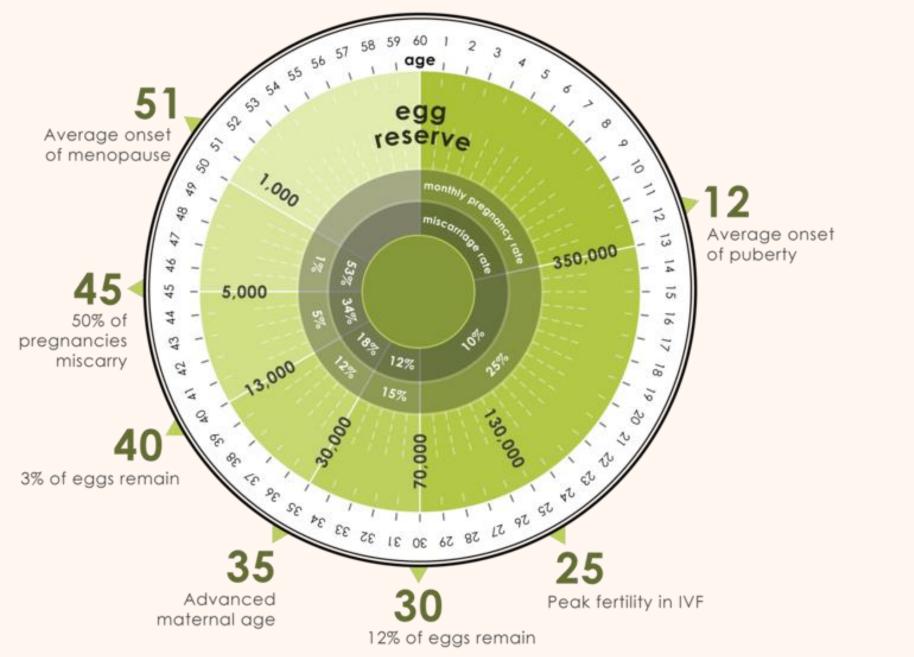
1 month					76%
3 months					18 %
6 months					0 %
12 months					6 %
Forever					
					0%


Couple seeks your advice on fertility after 12 months of not using contraception. How long would you advise couple to keep trying naturally at female age 35y (AMH at 25percentile) + semen analysis (total sperm numbers 60mil, forward motility 32%, morph

3 months	79	9 %
6 months	21	104
12 months	21	1%
12 months	09	%
24 months	09	%
5 years		,.
	09	%

Trying for pregnancy 1 year. Female age 28y, all investigations are normal. Karyotype 47, XXY, Azospermia, age 28. Your advice to the couple?

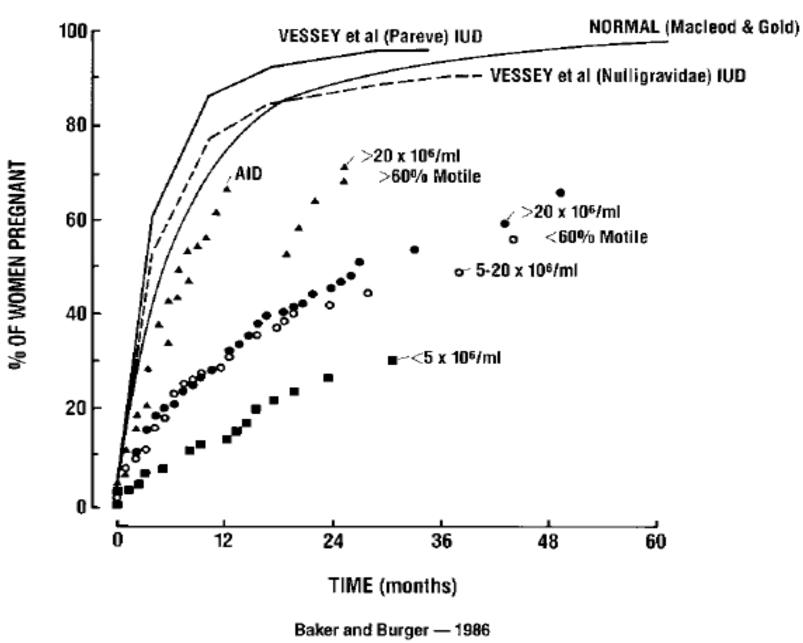
Trying for pregnancy 1 year. Female age 25y, all investigations are normal. Karyotype mos 46, X, idic (Y) (q11.21) (47) / 45,X (13), semen analysis (azospermia). Your advice to the couple?



Dr Bruno Radesic

Ashford Specialist Centre 55 Anzac Highway Ashford, SA, 5035 P: (08) 7234 3324 F: (08) 8311 6300 E: <u>radadmin@sahi.org.au</u>

W: www.brunoradesic.com.au



Benea World Leading Fertility

N	umber of factors	Monthly chance	Mean Years to Pregnancy	% Pregnancy in 2 years
	0	20 %	0.3 (4m)	93.6
0	1	5%	2	63.8
	2	1%	7	20.7
	3	0.2%	40	4.7

CUMULATIVE AND LIFETABLE PREGNANCY RATES

fertilitySA

This patient has a mosaic karyotype with a cell line with an isodicentric Y chromosome with two copies of the Y p arm (78%) and a 45,X cell line (12%).

